Newsfeeds
Reports on Progress in Physics - latest papers
Latest articles for Reports on Progress in Physics
-
Diffusive first-order phase transition: nucleation, growth and coarsening in solids
The phenomena of nucleation and growth, which fall into the category of first-order phase transitions, are of great importance. They are present everywhere in our daily lives. They enable us to understand and model a vast number of phenomena, from the formation of raindrops, to the gelling of polymers, the evolution of a virus population and the formation of galaxies. Surprisingly, this whole range of phenomena can be described by two seemingly antagonistic approaches: classical nucleation theory, which highlights the atomistic approach of the diffusion process, and the phase-field (PF) approach, which erases the discrete nature of the diffusion process. Although there is an huge quantity of articles and review papers dealing with the problem of first-order phase transition, the subject is so important and vast that it is very difficult to provide nowadays exhaustive syntheses on the subject. The revival over the past 20 years in the condensed matter world of PF approaches such as PF crystal, or the recent development of optimization methods such as gentle ascend dynamics, as well as the emergence of atom probe tomography, have enabled us to better understand the links between these antagonistic approaches, and above all to provide new experimental results to test the limits of both. This renewal has motivated the writing of this review, both to take stock of current knowledge on these two approaches. This review has two distinct objectives: summarizing generic previous models applies to discuss the nucleation, the growth and the coarsening processes. Despite some reviews already exist on these different subject, few of them present the different logical links between these models and their limitations, unifying them within the framework of the theory of macroscopic fluctuations, which has been developed over the last 20 years. In particular, we present the extension of the Cahn–Hilliard formalism to model the nucleation and growth process and we discuss the relevance of the notion of pseudo-spinodal and discuss. Such an extension allows interpreting experiments performed fat from the solubility limit and the spinodal line. Finally, this work proposes some clues to make this unified approach more predictive.
-
Dark matter search with a resonantly-coupled hybrid spin system
Recent advances in tabletop quantum sensor technology have enabled searches for nongravitational interactions of dark matter (DM). Traditional axion DM experiments rely on sharp resonance, resulting in extensive scanning time to cover a wide mass range. In this work, we present a broadband approach in an alkali- Ne spin system. We identify two distinct hybrid spin-coupled regimes: a self-compensation regime at low frequencies and a hybrid spin resonance regime at higher frequencies. By utilizing these two distinct regimes, we significantly enhance the bandwidth of Ne nuclear spin compared to conventional nuclear magnetic resonance, while maintaining competitive sensitivity. We present a comprehensive broadband search for axion-like DM, covering 5 orders of magnitude of Compton frequencies range within Hz. We set new constraints on the axion DM interactions with neutrons and protons, accounting for the effects of DM stochasticity. For the axion–neutron coupling, our results reach a low value of in the frequency range Hz surpassing astrophysical limits and providing the strongest laboratory constraints in the Hz range. For the axion-proton coupling, we offer the best terrestrial constraints for the frequency ranges Hz and Hz.
-
Recent progress on quantum simulations of non-standard Bose–Hubbard models
In recent years, the systems comprising of bosonic atoms confined to optical lattices at ultra-cold temperatures have demonstrated tremendous potential to unveil novel quantum mechanical effects appearing in lattice boson models with various kinds of interactions. In this progress report, we aim to provide an exposition to recent advancements in quantum simulations of such systems, modeled by different ‘non-standard’ Bose–Hubbard models, focusing primarily on long-range systems with dipole–dipole or cavity-mediated interactions. Through a carefully curated selection of topics, which includes the emergence of quantum criticality beyond Landau paradigm, bond-order wave insulators, the role of interaction-induced tunneling, the influence of transverse confinement on observed phases, or the effect of cavity-mediated all-to-all interactions, we report both theoretical and experimental developments from the last few years. Additionally, we discuss the real-time evolution of systems with long-range interactions, where sufficiently strong interactions render the dynamics non-ergodic. And finally to cap our discussions off, we survey recent experimental achievements in this rapidly evolving field, underscoring its interdisciplinary significance and potential for groundbreaking discoveries.
-
A mechanism for quantum-critical Planckian metal phase in high-temperature cuprate superconductors
The mysterious metallic phase showing T-linear resistivity and a universal scattering rate with a universal prefactor and logarithmic-in-temperature singular specific heat coefficient, the so-called ‘Planckian metal phase’ was observed in various overdoped high- cuprate superconductors over a finite range in doping. Revealing the mystery of the Planckian metal state is believed to be the key to understanding the mechanism for high- superconductivity. Here, we propose a generic microscopic mechanism for this state based on quantum-critical local bosonic charge Kondo fluctuations coupled to both spinon and a heavy conduction-electron Fermi surface within the heavy-fermion formulation of the slave-boson t–J model. By a controlled perturbative renormalization group analysis, we examine the competition between the pseudogap phase, characterized by Anderson’s Resonating-Valence-Bond spin-liquid, and the Fermi-liquid state, modeled by the electron hopping (effective charge Kondo effect). We find a quantum-critical metallic phase with a universal Planckian scaling in scattering rate near an extended localized-delocalized (pseudogap-to-Fermi liquid) charge-Kondo breakdown transition. The d-wave superconducting ground state emerges near the transition. Unprecedented qualitative and quantitative agreements are reached between our theoretical predictions and various experiments, including optical conductivity, universal doping-independent field-to-temperature scaling in magnetoresistance, specific heat coefficient, marginal Fermi-liquid spectral function observed in ARPES, and Fermi surface reconstruction observed in Hall coefficients in various overdoped cuprates. Our mechanism offers a microscopic understanding of the quantum-critical Planckian metal phase observed in cuprates and its link to the pseudogap, d-wave superconducting, and Fermi liquid phases. It offers a promising route for understanding how d-wave superconductivity emerges from such a strange metal phase in cuprates–one of the long-standing open problems in condensed matter physics since 1990s–as well as shows a broader implication for the Planckian strange metal states observed in other correlated unconventional superconductors.
-
Fundamental concepts, design rules and potentials in radiative cooling
Amidst the escalating environmental concerns driven by global warming and the detrimental impacts of extreme climates, energy consumption and greenhouse gas emissions associated with refrigeration have reached unprecedented levels. Radiative cooling, as an emerging renewable cooling technology, has been positioned as a pivotal strategy in the fight against global warming. This review examines the theoretical model of radiative cooling emitters and complex practical environment. We first investigate the thermodynamic interactions between environmental factors and the cooling surface, followed by an examination of innovative modulation techniques such as asymmetric/non-reciprocal radiative heat transfer mechanisms. Additionally, we summarize the latest advancements in structural design and simulation methodologies for radiative cooling materials at the device level. We then delve into potential applications of radiative cooling materials in various scenarios including energy-efficient construction, personal thermal management, photovoltaic cooling, and dynamic passive daytime radiative cooling materials with seasonal adaptability. In conclusion, we provide a comprehensive overview of this technology’s strengths and current challenges to inspire further research and application development in radiative cooling technology with a focus on contributing towards energy conservation objectives and promoting a sustainable society.