Newsfeeds

Reports on Progress in Physics - latest papers

Latest articles for Reports on Progress in Physics

IOPscience

  • Many-body localization in the age of classical computing *
    Statistical mechanics provides a framework for describing the physics of large, complex many-body systems using only a few macroscopic parameters to determine the state of the system. For isolated quantum many-body systems, such a description is achieved via the eigenstate thermalization hypothesis (ETH), which links thermalization, ergodicity and quantum chaotic behavior. However, tendency towards thermalization is not observed at finite system sizes and evolution times in a robust many-body localization (MBL) regime found numerically and experimentally in the dynamics of interacting many-body systems at strong disorder. Although the phenomenology of the MBL regime is well-established, the central question remains unanswered: under what conditions does the MBL regime give rise to an MBL phase, in which the thermalization does not occur even in the asymptotic limit of infinite system size and evolution time? This review focuses on recent numerical investigations aiming to clarify the status of the MBL phase, and it establishes the critical open questions about the dynamics of disordered many-body systems. The last decades of research have brought an unprecedented new variety of tools and indicators to study the breakdown of ergodicity, ranging from spectral and wave function measures, matrix elements of observables, through quantities probing unitary quantum dynamics, to transport and quantum information measures. We give a comprehensive overview of these approaches and attempt to provide a unified understanding of their main features. We emphasize general trends towards ergodicity with increasing length and time scales, which exclude naive single-parameter scaling hypothesis, necessitate the use of more refined scaling procedures, and prevent unambiguous extrapolations of numerical results to the asymptotic limit. Providing a concise description of numerical methods for studying ETH and MBL, we explore various approaches to tackle the question of the MBL phase. Persistent finite size drifts towards ergodicity consistently emerge in quantities derived from eigenvalues and eigenvectors of disordered many-body systems. The drifts are related to continuous inching towards ergodicity and non-vanishing transport observed in the dynamics of many-body systems, even at strong disorder. These phenomena impede the understanding of microscopic processes at the ETH-MBL crossover. Nevertheless, the abrupt slowdown of dynamics with increasing disorder strength provides premises suggesting the proximity of the MBL phase. This review concludes that the questions about thermalization and its failure in disordered many-body systems remain a captivating area open for further explorations.

  • Dispersive gains enhance wireless power transfer with asymmetric resonance
    Parity-time (PT) symmetry is a fundamental concept in non-Hermitian physics that has recently gained attention for its potential in engineering advanced electronic systems and achieving robust wireless power transfer (WPT) even in the presence of disturbances, through the incorporation of nonlinearity. However, the current PT-symmetric scheme falls short of achieving the theoretical maximum efficiency of WPT and faces challenges when applied to non-resistive loads. In this study, we propose a theoretical framework and provide experimental evidence demonstrating that asymmetric resonance, based on dispersive gain, can greatly enhance the efficiency of WPT beyond the limits of symmetric approaches. By leveraging the gain spectrum interleaving resulting from dispersion, we observe a mode switching phenomenon in asymmetric systems similar to the symmetry-breaking effect. This phenomenon reshapes the distribution of resonance energy and enables more efficient WPT compared to conventional methods. Our findings open up new possibilities for harnessing dispersion effects in various domains such as electronics, microwaves, and optics. This work represents a significant step towards exploiting dispersion as a means to optimize WPT and lays the foundation for future advancements in these fields.

  • Chiral polaritonics: cavity-mediated enantioselective excitation condensation
    Separation of the two mirror images of a chiral molecule, the enantiomers, is a historically complicated problem of major relevance for biological systems. Since chiral molecules are optically active, it has been speculated that strong coupling to circularly polarized fields may be used as a general procedure to unlock enantiospecific reactions. In this work, we focus on how chiral cavities can be used to drive asymmetry in the photochemistry of chiral molecular systems. We first show that strong coupling to circularly polarized fields leads to enantiospecific Rabi splittings, an effect that displays a collective behavior in line with other strong coupling phenomena. Additionally, entanglement with circularly polarized light generates an asymmetry in the enantiomer population of the polaritons, leading to a condensation of the excitation on a preferred molecular configuration. These results confirm that chiral cavities represent a tantalizing opportunity to drive asymmetric photochemistry in enantiomeric mixtures.

  • Anodizing of iron-based alloys: fundamentals, recent progress, and applications
    This review aims to comprehensively and systematically analyze the anodic oxidation process to form nanostructured oxide films on the surface of the most technologically relevant Fe-based alloys and steels. A special emphasis is put on detailed analysis of the mechanisms of the anodic formation of Fe-based nanostructured materials. The effect of anodizing parameters including the type of Fe-alloy, electrolyte composition, potential/current regimes, as well as various post-treatment procedures (including annealing treatment) on the growth, morphology, composition, and properties of the resulting oxide films is discussed in detail. Examples of possible applications of the anodic films grown on Fe-alloys in various fields including photocatalysis, energy storage, sensors, biomedicine, and others are also provided. Finally, current trends, challenges, and perspectives in the anodizing of Fe-alloys are addressed.

  • Spinless topological chirality from Umklapp scattering in twisted 3D structures
    Spinless systems exhibit unique topological characteristics compared to spinful ones, stemming from their distinct algebra. Without chiral interactions typically linked to spin, an intriguing yet unexplored interplay between topological and structural chirality may be anticipated. Here we discover spinless topological chiralities solely from structural chiralities that lie in the 3D spatial patterning of structureless units, exemplified using two types of twisted graphite systems. In a 3D screw twisted structure without periodicity in all directions, we find a chiral Weyl semimetal phase where bulk topology and chiral surface states are both determined by the screw direction. And in a 3D periodic structure formed with layer-alternating twist angle signs, a higher-order Dirac semimetal with chiral hinge states is discovered. Underlying these novel topological states is the intervalley Umklapp scattering that captures the chirality of the twisted interfaces, leading effectively to a sign-flipped chiral interlayer hopping, thereby introducing π-flux lattice gauge field that alters the symmetry algebra. Our findings point to a new pathway for engineering topological chirality through patterning twisted arrays of featureless units, which can expand the design principles for topological photonics and acoustics.